31 research outputs found

    Fault Tolerant Clustering Revisited

    Full text link
    In discrete k-center and k-median clustering, we are given a set of points P in a metric space M, and the task is to output a set C \subseteq ? P, |C| = k, such that the cost of clustering P using C is as small as possible. For k-center, the cost is the furthest a point has to travel to its nearest center, whereas for k-median, the cost is the sum of all point to nearest center distances. In the fault-tolerant versions of these problems, we are given an additional parameter 1 ?\leq \ell \leq ? k, such that when computing the cost of clustering, points are assigned to their \ell-th nearest-neighbor in C, instead of their nearest neighbor. We provide constant factor approximation algorithms for these problems that are both conceptually simple and highly practical from an implementation stand-point

    Avoiding the Global Sort: A Faster Contour Tree Algorithm

    Get PDF
    We revisit the classical problem of computing the \emph{contour tree} of a scalar field f:MRf:\mathbb{M} \to \mathbb{R}, where M\mathbb{M} is a triangulated simplicial mesh in Rd\mathbb{R}^d. The contour tree is a fundamental topological structure that tracks the evolution of level sets of ff and has numerous applications in data analysis and visualization. All existing algorithms begin with a global sort of at least all critical values of ff, which can require (roughly) Ω(nlogn)\Omega(n\log n) time. Existing lower bounds show that there are pathological instances where this sort is required. We present the first algorithm whose time complexity depends on the contour tree structure, and avoids the global sort for non-pathological inputs. If CC denotes the set of critical points in M\mathbb{M}, the running time is roughly O(vClogv)O(\sum_{v \in C} \log \ell_v), where v\ell_v is the depth of vv in the contour tree. This matches all existing upper bounds, but is a significant improvement when the contour tree is short and fat. Specifically, our approach ensures that any comparison made is between nodes in the same descending path in the contour tree, allowing us to argue strong optimality properties of our algorithm. Our algorithm requires several novel ideas: partitioning M\mathbb{M} in well-behaved portions, a local growing procedure to iteratively build contour trees, and the use of heavy path decompositions for the time complexity analysis

    On the Complexity of Randomly Weighted Voronoi Diagrams

    Full text link
    In this paper, we provide an O(npolylogn)O(n \mathrm{polylog} n) bound on the expected complexity of the randomly weighted Voronoi diagram of a set of nn sites in the plane, where the sites can be either points, interior-disjoint convex sets, or other more general objects. Here the randomness is on the weight of the sites, not their location. This compares favorably with the worst case complexity of these diagrams, which is quadratic. As a consequence we get an alternative proof to that of Agarwal etal [AHKS13] of the near linear complexity of the union of randomly expanded disjoint segments or convex sets (with an improved bound on the latter). The technique we develop is elegant and should be applicable to other problems

    Fast Clustering with Lower Bounds: No Customer too Far, No Shop too Small

    Full text link
    We study the \LowerBoundedCenter (\lbc) problem, which is a clustering problem that can be viewed as a variant of the \kCenter problem. In the \lbc problem, we are given a set of points P in a metric space and a lower bound \lambda, and the goal is to select a set C \subseteq P of centers and an assignment that maps each point in P to a center of C such that each center of C is assigned at least \lambda points. The price of an assignment is the maximum distance between a point and the center it is assigned to, and the goal is to find a set of centers and an assignment of minimum price. We give a constant factor approximation algorithm for the \lbc problem that runs in O(n \log n) time when the input points lie in the d-dimensional Euclidean space R^d, where d is a constant. We also prove that this problem cannot be approximated within a factor of 1.8-\epsilon unless P = \NP even if the input points are points in the Euclidean plane R^2.Comment: 14 page

    Fast and Exact Convex Hull Simplification

    Get PDF

    In pursuit of linear complexity in discrete and computational geometry

    Get PDF
    Many computational problems arise naturally from geometric data. In this thesis, we consider three such problems: (i) distance optimization problems over point sets, (ii) computing contour trees over simplicial meshes, and (iii) bounding the expected complexity of weighted Voronoi diagrams. While these topics are broad, here the focus is on identifying structure which implies linear (or near linear) algorithmic and descriptive complexity. The first topic we consider is in geometric optimization. More specifically, we define a large class of distance problems, for which we provide linear time exact or approximate solutions. Roughly speaking, the class of problems facilitate either clustering together close points (i.e. netting) or throwing out outliers (i.e pruning), allowing for successively smaller summaries of the relevant information in the input. A surprising number of classical geometric optimization problems are unified under this framework, including finding the optimal k-center clustering, the kth ranked distance, the kth heaviest edge of the MST, the minimum radius ball enclosing k points, and many others. In several cases we get the first known linear time approximation algorithm for a given problem, where our approximation ratio matches that of previous work. The second topic we investigate is contour trees, a fundamental structure in computational topology. Contour trees give a compact summary of the evolution of level sets on a mesh, and are typically used on massive data sets. Previous algorithms for computing contour trees took Θ(n log n) time and were worst-case optimal. Here we provide an algorithm whose running time lies between Θ(nα(n)) and Θ(n log n), and varies depending on the shape of the tree, where α(n) is the inverse Ackermann function. In particular, this is the first algorithm with O(nα(n)) running time on instances with balanced contour trees. Our algorithmic results are complemented by lower bounds indicating that, up to a factor of α(n), on all instance types our algorithm performs optimally. For the final topic, we consider the descriptive complexity of weighted Voronoi diagrams. Such diagrams have quadratic (or higher) worst-case complexity, however, as was the case for contour trees, here we push beyond worst-case analysis. A new diagram, called the candidate diagram, is introduced, which allows us to bound the complexity of weighted Voronoi diagrams arising from a particular probabilistic input model. Specifically, we assume weights are randomly permuted among fixed Voronoi sites, an assumption which is weaker than the more typical sampled locations assumption. Under this assumption, the expected complexity is shown to be near linear

    From Proximity to Utility: A Voronoi Partition of Pareto Optima

    Get PDF
    We present an extension of Voronoi diagrams where when considering which site a client is going to use, in addition to the site distances, other site attributes are also considered (for example, prices or weights). A cell in this diagram is then the locus of all clients that consider the same set of sites to be relevant. In particular, the precise site a client might use from this candidate set depends on parameters that might change between usages, and the candidate set lists all of the relevant sites. The resulting diagram is significantly more expressive than Voronoi diagrams, but naturally has the drawback that its complexity, even in the plane, might be quite high. Nevertheless, we show that if the attributes of the sites are drawn from the same distribution (note that the locations are fixed), then the expected complexity of the candidate diagram is near linear. To this end, we derive several new technical results, which are of independent interest. In particular, we provide a high-probability, asymptotically optimal bound on the number of Pareto optima points in a point set uniformly sampled from the dd-dimensional hypercube. To do so we revisit the classical backward analysis technique, both simplifying and improving relevant results in order to achieve the high-probability bounds
    corecore